Skip to main content
Self-hosting W&B Weave allows you to have more control over its environment and configuration. This can help you create a more isolated environment and meet additional security compliance. This document guides you through how to deploy all the components required to run W&B Weave in a self-managed environment using the Altinity ClickHouse Operator. Self-managed Weave deployments rely on ClickHouseDB to manage its backend. This deployment uses:
  • Altinity ClickHouse Operator: Enterprise-grade ClickHouse management for Kubernetes
  • ClickHouse Keeper: Distributed coordination service (replaces ZooKeeper)
  • ClickHouse Cluster: High-availability database cluster for trace storage
  • S3-Compatible Storage: Object storage for ClickHouse data persistence
For a detailed reference architecture, see W&B Self-Managed Reference Architecture.

Important Setup Notes

The configuration examples in this guide are for reference only. Because each organization’s Kubernetes environment is unique, your self-hosted instance will likely require you to adjust:
  • Security & Compliance: Security contexts, runAsUser/fsGroup values, and other security settings according to your organization’s security policies and Kubernetes/OpenShift requirements.
  • Resource Sizing: The resource allocations shown are starting points. Consult with your W&B Solutions Architect team for proper sizing based on your expected trace volume and performance requirements.
  • Infrastructure Specifics: Update storage classes, node selectors, and other infrastructure-specific settings to match your environment.
These configurations in this guide should be treated like templates, not prescriptive solutions.

Architecture

Prerequisites

Self-managed Weave instances require the following resources:
  • Kubernetes Cluster: Version 1.24+
  • Kubernetes Nodes: Multi-node cluster (minimum 3 nodes recommended for high availability)
  • Storage Class: A working StorageClass for persistent volumes (e.g., gp3, standard, nfs-csi)
  • S3 Bucket: Pre-configured S3 or S3-compatible bucket with appropriate access permissions
  • W&B Platform: Already installed and running (see W&B Self-Managed Deployment Guide)
  • W&B License: Weave-enabled license from W&B Support
Do not make sizing decisions based on these prerequisites list alone. Resource needs vary significantly based on trace volume and usage patterns. See the detailed Resource Requirements section for explicit cluster-sizing guidance.

Required Tools

To set up your instance, you need the following tools:
  • kubectl configured with cluster access
  • helm v3.0+
  • AWS credentials (if using S3) or access to S3-compatible storage

Network Requirements

Your Kubernetes cluster requires the following network setup:
  • Pods in the clickhouse namespace must communicate with pods in the wandb namespace
  • ClickHouse nodes must communicate with each other on ports 8123, 9000, 9009, and 2181

Deploy your self-managed Weave instance

Step 1: Deploy Altinity ClickHouse Operator

The Altinity ClickHouse Operator manages ClickHouse installations in Kubernetes.

1.1 Add the Altinity Helm repository

helm repo add altinity https://helm.altinity.com
helm repo update

1.2 Create the operator configuration

Create a file named ch-operator.yaml:
operator:
  image:
    repository: altinity/clickhouse-operator
    tag: "0.25.4"

  # Security context - adjust according to your cluster's requirements
  containerSecurityContext:
    runAsGroup: 0
    runAsNonRoot: true
    runAsUser: 10001 # Update based on your OpenShift/Kubernetes security policies
    allowPrivilegeEscalation: false
    capabilities:
      drop:
        - ALL
    privileged: false
    readOnlyRootFilesystem: false

metrics:
  enabled: false

# Name override - customize if needed
nameOverride: "wandb"
The containerSecurityContext values shown here work for most Kubernetes distributions. For OpenShift, you may need to adjust runAsUser and fsGroup to match your project’s assigned UID range.

1.3 Install the operator

helm upgrade --install ch-operator altinity/altinity-clickhouse-operator \
  --version 0.25.4 \
  --namespace clickhouse \
  --create-namespace \
  -f ch-operator.yaml

1.4 Verify the operator installation

# Check operator pod is running
kubectl get pods -n clickhouse

# Expected output:
# NAME                                 READY   STATUS    RESTARTS   AGE
# ch-operator-wandb-xxxxx              1/1     Running   0          30s

# Verify operator image version
kubectl get pods -n clickhouse -o jsonpath="{.items[*].spec.containers[*].image}" | \
  tr ' ' '\n' | grep -v 'metrics-exporter' | sort -u

# Expected output:
# altinity/clickhouse-operator:0.25.4

Step 2: Prepare S3 Storage

ClickHouse requires S3 or S3-compatible storage for data persistence.

2.1 Create an S3 bucket

Create an S3 bucket in your AWS account or S3-compatible storage provider:
# Example for AWS
aws s3 mb s3://my-wandb-clickhouse-bucket --region eu-central-1

2.2 Configure S3 credentials

You have two options for providing S3 access credentials:
Option A: Using AWS IAM Roles (IRSA - Recommended for AWS)
If your Kubernetes nodes have an IAM role with S3 access, ClickHouse can use the EC2 instance metadata:
# In ch-server.yaml, set:
<use_environment_credentials>true</use_environment_credentials>
Required IAM Policy (attached to your node IAM role):
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "s3:GetObject",
        "s3:PutObject",
        "s3:DeleteObject",
        "s3:ListBucket"
      ],
      "Resource": [
        "arn:aws:s3:::my-wandb-clickhouse-bucket",
        "arn:aws:s3:::my-wandb-clickhouse-bucket/*"
      ]
    }
  ]
}
Option B: Using Access Keys
If you prefer using static credentials, create a Kubernetes secret:
kubectl create secret generic aws-creds \
  --namespace clickhouse \
  --from-literal aws_access_key=YOUR_ACCESS_KEY \
  --from-literal aws_secret_key=YOUR_SECRET_KEY
Then configure ClickHouse to use the secret (see ch-server.yaml configuration below).

Step 3: Deploy ClickHouse Keeper

ClickHouse Keeper provides the coordination system for data replication and distributed DDL queries execution.

3.1 Create the Keeper configuration

Create a file named ch-keeper.yaml:
apiVersion: "clickhouse-keeper.altinity.com/v1"
kind: "ClickHouseKeeperInstallation"
metadata:
  name: wandb
  namespace: clickhouse
  annotations: {}
spec:
  defaults:
    templates:
      podTemplate: default
      dataVolumeClaimTemplate: default

  templates:
    podTemplates:
      - name: keeper
        metadata:
          labels:
            app: clickhouse-keeper
        spec:
          # Pod security context - adjust according to your environment
          securityContext:
            fsGroup: 10001 # Update based on your cluster's security requirements
            fsGroupChangePolicy: Always
            runAsGroup: 0
            runAsNonRoot: true
            runAsUser: 10001 # For OpenShift, use your project's assigned UID range
            seccompProfile:
              type: RuntimeDefault

          # Anti-affinity to spread keepers across nodes (recommended for HA)
          # Customize or remove based on your cluster size and availability requirements
          affinity:
            podAntiAffinity:
              requiredDuringSchedulingIgnoredDuringExecution:
                - labelSelector:
                    matchExpressions:
                      - key: "app"
                        operator: In
                        values:
                          - clickhouse-keeper
                  topologyKey: "kubernetes.io/hostname"

          containers:
            - name: clickhouse-keeper
              imagePullPolicy: IfNotPresent
              image: "clickhouse/clickhouse-keeper:25.3.5.42"
              # Resource requests - example values, adjust based on workload
              resources:
                requests:
                  memory: "256Mi"
                  cpu: "0.5"
                limits:
                  memory: "2Gi"
                  cpu: "1"

              securityContext:
                allowPrivilegeEscalation: false
                capabilities:
                  drop:
                    - ALL
                privileged: false
                readOnlyRootFilesystem: false

    volumeClaimTemplates:
      - name: data
        metadata:
          labels:
            app: clickhouse-keeper
        spec:
          storageClassName: gp3 # Change to your StorageClass
          accessModes:
            - ReadWriteOnce
          resources:
            requests:
              storage: 10Gi

  configuration:
    clusters:
      - name: keeper # Keeper cluster name - used in service DNS naming
        layout:
          replicasCount: 3
        templates:
          podTemplate: keeper
          dataVolumeClaimTemplate: data

    settings:
      logger/level: "information"
      logger/console: "true"
      listen_host: "0.0.0.0"
      keeper_server/four_letter_word_white_list: "*"
      keeper_server/coordination_settings/raft_logs_level: "information"
      keeper_server/enable_ipv6: "false"
      keeper_server/coordination_settings/async_replication: "true"
Important Configuration Updates:
  • StorageClass: Update storageClassName: gp3 to match your cluster’s available StorageClass
  • Security Context: Adjust runAsUser, fsGroup values to comply with your organization’s security policies
  • Anti-Affinity: Customize or remove the affinity section based on your cluster topology and HA requirements
  • Resources: The CPU/memory values are examples - consult with W&B Solutions Architects for proper sizing
  • Naming: If you change metadata.name or configuration.clusters[0].name, you must update the Keeper hostnames in ch-server.yaml (Step 4) to match

3.2 Deploy ClickHouse Keeper

kubectl apply -f ch-keeper.yaml
NAME READY STATUS RESTARTS AGE clickhouse-operator-857c69ffc6-2v4jh 2/2 Running 0 1m

### Step 2: Configure S3 Storage

#### 3.3 Verify Keeper deployment

```bash
# Check Keeper pods
kubectl get pods -n clickhouse -l app=clickhouse-keeper

# Expected output:
# NAME                     READY   STATUS    RESTARTS   AGE
# chk-wandb-keeper-0-0-0   1/1     Running   0          2m
# chk-wandb-keeper-0-1-0   1/1     Running   0          2m
# chk-wandb-keeper-0-2-0   1/1     Running   0          2m

# Check Keeper services
kubectl get svc -n clickhouse | grep keeper

# Expected to see keeper services on port 2181

Step 4: Deploy ClickHouse Cluster

Now deploy the ClickHouse server cluster that will store Weave trace data.

4.1 Create the ClickHouse server configuration

Create a file named ch-server.yaml:
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
  name: wandb
  namespace: clickhouse
  annotations: {}
spec:
  defaults:
    templates:
      podTemplate: default
      dataVolumeClaimTemplate: default

  templates:
    podTemplates:
      - name: clickhouse
        metadata:
          labels:
            app: clickhouse-server
        spec:
          # Pod security context - customize for your environment
          securityContext:
            fsGroup: 10001 # Adjust based on your security policies
            fsGroupChangePolicy: Always
            runAsGroup: 0
            runAsNonRoot: true
            runAsUser: 10001 # For OpenShift, use assigned UID range
            seccompProfile:
              type: RuntimeDefault

          # Anti-affinity rule - ensures servers run on different nodes (optional but recommended)
          # Adjust or remove based on your cluster size and requirements
          affinity:
            podAntiAffinity:
              requiredDuringSchedulingIgnoredDuringExecution:
                - labelSelector:
                    matchExpressions:
                      - key: "app"
                        operator: In
                        values:
                          - clickhouse-server
                  topologyKey: "kubernetes.io/hostname"

          containers:
            - name: clickhouse
              image: clickhouse/clickhouse-server:25.3.5.42
              # Example resource allocation - adjust based on workload
              resources:
                requests:
                  memory: 1Gi
                  cpu: 1
                limits:
                  memory: 16Gi
                  cpu: 4

              # AWS credentials (remove this section if using IRSA)
              env:
                - name: AWS_ACCESS_KEY_ID
                  valueFrom:
                    secretKeyRef:
                      name: aws-creds
                      key: aws_access_key
                - name: AWS_SECRET_ACCESS_KEY
                  valueFrom:
                    secretKeyRef:
                      name: aws-creds
                      key: aws_secret_key

              securityContext:
                allowPrivilegeEscalation: false
                capabilities:
                  drop:
                    - ALL
                privileged: false
                readOnlyRootFilesystem: false

    volumeClaimTemplates:
      - name: data
        metadata:
          labels:
            app: clickhouse-server
        spec:
          accessModes:
            - ReadWriteOnce
          resources:
            requests:
              storage: 50Gi
          storageClassName: gp3 # Change to your StorageClass

  configuration:
    # Keeper (ZooKeeper) configuration
    # IMPORTANT: These hostnames MUST match your Keeper deployment from Step 3
    zookeeper:
      nodes:
        - host: chk-wandb-keeper-0-0.clickhouse.svc.cluster.local
          port: 2181
        - host: chk-wandb-keeper-0-1.clickhouse.svc.cluster.local
          port: 2181
        - host: chk-wandb-keeper-0-2.clickhouse.svc.cluster.local
          port: 2181
      # Optional: Uncomment to adjust timeouts if needed
      # session_timeout_ms: 30000
      # operation_timeout_ms: 10000

    # User configuration
    users:
      weave/password: weave123
      weave/access_management: 1
      weave/profile: default
      weave/networks/ip:
        - "0.0.0.0/0"
        - "::"

    # Server settings
    settings:
      disable_internal_dns_cache: 1

    # Cluster configuration
    clusters:
      - name: weavecluster # Cluster name - can be customized but must match wandb-cr.yaml
        layout:
          shardsCount: 1
          replicasCount: 3 # Number of replicas - adjust based on HA requirements
        templates:
          podTemplate: clickhouse
          dataVolumeClaimTemplate: data

    # Configuration files
    files:
      config.d/network_configuration.xml: |
        <clickhouse>
            <listen_host>0.0.0.0</listen_host>
            <listen_host>::</listen_host>
        </clickhouse>

      config.d/logger.xml: |
        <clickhouse>
            <logger>
                <level>information</level>
            </logger>
        </clickhouse>

      config.d/storage_configuration.xml: |
        <clickhouse>
            <storage_configuration>
                <disks>
                    <s3_disk>
                        <type>s3</type>
                        <!-- Update with your S3 bucket endpoint and region -->
                        <endpoint>https://YOUR-BUCKET-NAME.s3.YOUR-REGION.amazonaws.com/s3_disk/{replica}</endpoint>
                        <metadata_path>/var/lib/clickhouse/disks/s3_disk/</metadata_path>
                        <!-- Use environment credentials (IRSA) or remove for access keys -->
                        <use_environment_credentials>true</use_environment_credentials>
                        <region>YOUR-REGION</region>
                    </s3_disk>
                    <s3_disk_cache>
                        <type>cache</type>
                        <disk>s3_disk</disk>
                        <path>/var/lib/clickhouse/s3_disk_cache/cache/</path>
                        <!-- Cache size MUST be smaller than persistent volume -->
                        <max_size>40Gi</max_size>
                        <cache_on_write_operations>true</cache_on_write_operations>
                    </s3_disk_cache>
                </disks>
                <policies>
                    <s3_main>
                        <volumes>
                            <main>
                                <disk>s3_disk_cache</disk>
                            </main>
                        </volumes>
                    </s3_main>
                </policies>
            </storage_configuration>
            <merge_tree>
                <storage_policy>s3_main</storage_policy>
            </merge_tree>
        </clickhouse>
Critical Configuration Updates Required:
  1. StorageClass: Update storageClassName: gp3 to match your cluster’s StorageClass
  2. S3 Endpoint: Replace YOUR-BUCKET-NAME and YOUR-REGION with your actual values
  3. Cache Size: The <max_size>40Gi</max_size> must be smaller than the persistent volume size (50Gi)
  4. Security Context: Adjust runAsUser, fsGroup, and other security settings to match your organization’s policies
  5. Resource Allocation: The CPU/memory values are examples only - consult with your W&B Solutions Architect for proper sizing based on your expected trace volume
  6. Anti-Affinity Rules: Customize or remove based on your cluster topology and high-availability needs
  7. Keeper Hostnames: The Keeper node hostnames must match your Keeper deployment naming from Step 3 (see “Understanding Keeper Naming” below)
  8. Cluster Naming: The cluster name weavecluster can be changed, but it must match the WF_CLICKHOUSE_REPLICATED_CLUSTER value in Step 5
  9. Credentials:
    • For IRSA: Keep <use_environment_credentials>true</use_environment_credentials>
    • For access keys: Remove this line and ClickHouse will use the environment variables from the secret

4.2 Update S3 configuration

Edit the storage_configuration.xml section in ch-server.yaml: Example for AWS S3:
<endpoint>https://my-wandb-clickhouse.s3.eu-central-1.amazonaws.com/s3_disk/{replica}</endpoint>
<region>eu-central-1</region>
Example for MinIO:
<endpoint>https://minio.example.com:9000/my-bucket/s3_disk/{replica}</endpoint>
<region>us-east-1</region>
Do not remove {replica} - this ensures each ClickHouse replica writes to its own folder in the bucket.

4.3 Configure credentials (Option B only)

If using Option B (Access Keys) from Step 2, ensure the env section in ch-server.yaml references the secret:
env:
  - name: AWS_ACCESS_KEY_ID
    valueFrom:
      secretKeyRef:
        name: aws-creds
        key: aws_access_key
  - name: AWS_SECRET_ACCESS_KEY
    valueFrom:
      secretKeyRef:
        name: aws-creds
        key: aws_secret_key
If using Option A (IRSA), remove the entire env section.

4.4 Understanding Keeper Naming

The Keeper node hostnames in the zookeeper.nodes section follow a specific pattern based on your Keeper deployment from Step 3: Hostname Pattern: chk-{installation-name}-{cluster-name}-{cluster-index}-{replica-index}.{namespace}.svc.cluster.local Where:
  • chk = ClickHouseKeeperInstallation prefix (fixed)
  • {installation-name} = The metadata.name from ch-keeper.yaml (e.g., wandb)
  • {cluster-name} = The configuration.clusters[0].name from ch-keeper.yaml (e.g., keeper)
  • {cluster-index} = Cluster index, typically 0 for single cluster
  • {replica-index} = Replica number: 0, 1, 2 for 3 replicas
  • {namespace} = Kubernetes namespace (e.g., clickhouse)
Example with default names:
chk-wandb-keeper-0-0.clickhouse.svc.cluster.local
chk-wandb-keeper-0-1.clickhouse.svc.cluster.local
chk-wandb-keeper-0-2.clickhouse.svc.cluster.local
If you customize the Keeper installation name (e.g., metadata.name: myweave):
chk-myweave-keeper-0-0.clickhouse.svc.cluster.local
chk-myweave-keeper-0-1.clickhouse.svc.cluster.local
chk-myweave-keeper-0-2.clickhouse.svc.cluster.local
If you customize the Keeper cluster name (e.g., clusters[0].name: coordination):
chk-wandb-coordination-0-0.clickhouse.svc.cluster.local
chk-wandb-coordination-0-1.clickhouse.svc.cluster.local
chk-wandb-coordination-0-2.clickhouse.svc.cluster.local
To verify your actual Keeper hostnames:
# List Keeper services to see the actual names
kubectl get svc -n clickhouse | grep keeper

# List Keeper pods to confirm the naming pattern
kubectl get pods -n clickhouse -l app=clickhouse-keeper
The Keeper hostnames in ch-server.yaml must exactly match the actual service names created by the Keeper deployment, or ClickHouse servers will fail to connect to the coordination service.

4.5 Deploy ClickHouse cluster

kubectl apply -f ch-server.yaml

4.6 Verify ClickHouse deployment

# Check ClickHouse pods
kubectl get pods -n clickhouse -l app=clickhouse-server

# Expected output:
# NAME                           READY   STATUS    RESTARTS   AGE
# chi-wandb-weavecluster-0-0-0   1/1     Running   0          3m
# chi-wandb-weavecluster-0-1-0   1/1     Running   0          3m
# chi-wandb-weavecluster-0-2-0   1/1     Running   0          3m

# Test ClickHouse connectivity
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query "SELECT version()"

# Check cluster status
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query \
  "SELECT cluster, host_name, port FROM system.clusters WHERE cluster='weavecluster'"

Step 5: Enable Weave in W&B Platform

Now configure the W&B Platform to use the ClickHouse cluster for Weave traces.

5.1 Gather ClickHouse connection information

You’ll need:
  • Host: clickhouse-wandb.clickhouse.svc.cluster.local
  • Port: 8123
  • User: weave (as configured in ch-server.yaml)
  • Password: weave123 (as configured in ch-server.yaml)
  • Database: weave (will be created automatically)
  • Cluster Name: weavecluster (as configured in ch-server.yaml)
The host name follows this pattern: clickhouse-{installation-name}.{namespace}.svc.cluster.local

5.2 Update W&B Custom Resource

Edit your W&B Platform Custom Resource (CR) to add Weave configuration:
apiVersion: apps.wandb.com/v1
kind: WeightsAndBiases
metadata:
  name: wandb
  namespace: wandb
spec:
  values:
    global:
      # ... existing configuration ...

      # Add ClickHouse configuration
      clickhouse:
        install: false # We deployed it separately
        host: clickhouse-wandb.clickhouse.svc.cluster.local
        port: 8123
        user: weave
        password: weave123
        database: weave
        replicated: true # REQUIRED for multi-replica setup

      # Enable Weave Trace
      weave-trace:
        enabled: true

    # Weave Trace configuration
    weave-trace:
      install: true
      extraEnv:
        WF_CLICKHOUSE_REPLICATED: "true"
        WF_CLICKHOUSE_REPLICATED_CLUSTER: "weavecluster"
      image:
        repository: wandb/weave-trace
        tag: 0.74.1
      replicaCount: 1
      size: "default"
      sizing:
        default:
          autoscaling:
            horizontal:
              enabled: false
          # Example resource allocation - adjust based on workload
          resources:
            limits:
              cpu: 4
              memory: "8Gi"
            requests:
              cpu: 1
              memory: "4Gi"
      # Pod security context - customize for your environment
      podSecurityContext:
        fsGroup: 10001 # Adjust based on your security requirements
        fsGroupChangePolicy: Always
        runAsGroup: 0
        runAsNonRoot: true
        runAsUser: 10001 # For OpenShift, use assigned UID range
        seccompProfile:
          type: RuntimeDefault
      # Container security context
      securityContext:
        allowPrivilegeEscalation: false
        capabilities:
          drop:
            - ALL
        privileged: false
        readOnlyRootFilesystem: false
Critical Settings:
  • clickhouse.replicated: true - Required when using 3 replicas
  • WF_CLICKHOUSE_REPLICATED: "true" - Required for replicated setup
  • WF_CLICKHOUSE_REPLICATED_CLUSTER: "weavecluster" - Must match the cluster name in ch-server.yaml
Security contexts, resource allocations, and other Kubernetes-specific configurations shown above are reference examples. Customize them according to your organization’s requirements and consult with your W&B Solutions Architect team for proper resource sizing.

5.3 Apply the updated configuration

kubectl apply -f wandb-cr.yaml

5.4 Verify Weave Trace deployment

# Check weave-trace pod status
kubectl get pods -n wandb | grep weave-trace

# Expected output:
# wandb-weave-trace-bc-xxxxx   1/1     Running   0          2m

# Check weave-trace logs for ClickHouse connection
kubectl logs -n wandb <weave-trace-pod-name> --tail=50

# Look for successful ClickHouse connection messages

Step 6: Initialize Weave Database

The weave-trace service will automatically create the required database schema on first startup.

6.1 Monitor database migration

# Watch weave-trace logs during startup
kubectl logs -n wandb <weave-trace-pod-name> -f

# Look for migration messages indicating successful database initialization

6.2 Verify database creation

# Connect to ClickHouse and check database
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query \
  "SHOW DATABASES"

# Expected to see 'weave' database listed

# Check tables in weave database
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query \
  "SHOW TABLES FROM weave"

Step 7: Verify Weave is Enabled

7.1 Access W&B Console

Navigate to your W&B instance URL in a web browser.

7.2 Check Weave license status

In the W&B Console:
  1. Go to Top Right MenuOrganization Dashboard
  2. Verify that Weave access is enabled

7.3 Test Weave functionality

Create a simple Python test to verify Weave is working:
import weave

# Initialize Weave (replace with your actual W&B host)
weave.init('test-project')

# Create a simple traced function
@weave.op()
def hello_weave(name: str) -> str:
    return f"Hello, {name}!"

# Call the function
result = hello_weave("World")
print(result)
After running this, check your W&B UI for traces at the traces page in your organization.

Troubleshooting

ClickHouse Keeper Issues

Problem: Keeper pods stuck in Pending state Solution: Check multiple possible causes:
  1. PVC and StorageClass issues:
kubectl get pvc -n clickhouse
kubectl describe pvc -n clickhouse
Ensure your StorageClass is configured correctly and has available capacity.
  1. Anti-affinity and node availability:
# Check if anti-affinity rules prevent scheduling
kubectl describe pod -n clickhouse <pod-name> | grep -A 10 "Events:"

# Check available nodes and their resources
kubectl get nodes
kubectl describe nodes | grep -A 5 "Allocated resources"
Common issues:
  • Anti-affinity requires 3 separate nodes, but cluster has fewer nodes
  • Nodes don’t have sufficient CPU/memory to meet pod requests
  • Node taints preventing pod scheduling
Solutions:
  • Remove or adjust anti-affinity rules if you have fewer than 3 nodes
  • Use preferredDuringSchedulingIgnoredDuringExecution instead of requiredDuringSchedulingIgnoredDuringExecution for softer anti-affinity
  • Reduce resource requests if nodes are constrained
  • Add more nodes to your cluster

Problem: Keeper pods in CrashLoopBackOff Solution: Check logs and verify configuration:
kubectl logs -n clickhouse <keeper-pod-name>
Common issues:
  • Incorrect security context (check runAsUser, fsGroup)
  • Volume permission issues
  • Port conflicts
  • Configuration errors in ch-keeper.yaml

ClickHouse Server Issues

Problem: ClickHouse cannot connect to S3 Solution: Verify S3 credentials and permissions:
# Check if secret exists (if using access keys)
kubectl get secret aws-creds -n clickhouse

# Check ClickHouse logs for S3 errors
kubectl logs -n clickhouse <clickhouse-pod-name> | grep -i s3

# Verify S3 endpoint in storage configuration
kubectl get chi wandb -n clickhouse -o yaml | grep -A 10 storage_configuration

Problem: ClickHouse cannot connect to Keeper Solution: Verify Keeper endpoints and naming:
# Check Keeper services and their actual names
kubectl get svc -n clickhouse | grep keeper

# Check Keeper pods to confirm naming pattern
kubectl get pods -n clickhouse -l app=clickhouse-keeper

# Compare with zookeeper.nodes configuration in ch-server.yaml
# The hostnames MUST match the actual service names

# Check ClickHouse logs for connection errors
kubectl logs -n clickhouse chi-wandb-weavecluster-0-0-0 | grep -i keeper
If the connection fails, the Keeper hostnames in ch-server.yaml likely don’t match your actual Keeper deployment. See “Understanding Keeper Naming” in Step 4 for the naming pattern.

Weave Trace Issues

Problem: weave-trace pod fails to start Solution: Check ClickHouse connectivity:
# Get weave-trace pod name
kubectl get pods -n wandb | grep weave-trace

# Check weave-trace logs
kubectl logs -n wandb <weave-trace-pod-name>

# Common error: "connection refused" or "authentication failed"
# Verify ClickHouse credentials in wandb-cr.yaml match ch-server.yaml

Problem: Weave not showing as enabled in Console Solution: Verify configuration:
  1. Check license includes Weave:
    kubectl get secret license-key -n wandb -o jsonpath='{.data.value}' | base64 -d | jq
    
  2. Ensure weave-trace.enabled: true and clickhouse.replicated: true are set in wandb-cr.yaml
  3. Check W&B operator logs:
    kubectl logs -n wandb deployment/wandb-controller-manager
    

Problem: Database migration fails Solution: Check cluster name matches: The WF_CLICKHOUSE_REPLICATED_CLUSTER environment variable must match the cluster name in ch-server.yaml:
# In ch-server.yaml:
clusters:
  - name: weavecluster # <-- This name

# Must match in wandb-cr.yaml:
weave-trace:
  extraEnv:
    WF_CLICKHOUSE_REPLICATED_CLUSTER: "weavecluster" # <-- This value

Resource Requirements

The resource allocations below are example starting points only. Actual requirements vary significantly based on:
  • Trace ingestion volume (traces per second)
  • Query patterns and concurrency
  • Data retention period
  • Number of concurrent users
Always consult with your W&B Solutions Architect team to determine appropriate sizing for your specific use case. Under-provisioned resources can lead to performance issues, while over-provisioning wastes infrastructure costs.

Minimum Production Setup

ComponentReplicasCPU Request / LimitMemory Request / LimitStorage
ClickHouse Keeper30.5 / 1256Mi / 2Gi10Gi each
ClickHouse Server31 / 41Gi / 16Gi50Gi each
Weave Trace11 / 44Gi / 8Gi-
Total7 pods~4.5 / 15 CPU~7.8Gi / 58Gi180Gi
Suitable for: Development, testing, or low-volume production environments For production workloads with high trace volume:
ComponentReplicasCPU Request / LimitMemory Request / LimitStorage
ClickHouse Keeper31 / 21Gi / 4Gi20Gi each
ClickHouse Server31 / 168Gi / 64Gi200Gi each
Weave Trace2-31 / 44Gi / 8Gi-
Total8-9 pods~6-9 / 52-64 CPU~27-33Gi / 204-216Gi660Gi
Suitable for: High-volume production environments For ultra-high volume deployments, contact your W&B Solutions Architect team for custom sizing recommendations based on your specific trace volume and performance requirements.

Advanced Configuration

This section covers customization options for self-managed Weave deployments, including scaling ClickHouse capacity through vertical scaling or horizontal scaling, updating ClickHouse versions by modifying image tags in both keeper and server configurations, and monitoring ClickHouse health. We recommend consulting with your W&B Solutions Architect team when making advanced changes to your instance to ensure they align with your performance and reliability requirements.

Scaling ClickHouse

To increase ClickHouse capacity, you can:
  1. Vertical Scaling: Increase resources per pod (simpler approach)
    resources:
      requests:
        memory: 8Gi
        cpu: 1
      limits:
        memory: 64Gi
        cpu: 16
    
    Recommendation: Monitor actual resource usage and scale accordingly. For ultra-high volume deployments, contact your W&B Solutions Architect team.
  2. Horizontal Scaling: Add more replicas (requires careful planning)
    • Increasing replicas requires data rebalancing
    • Consult ClickHouse documentation for shard management
    • Contact W&B Support before implementing horizontal scaling in production

Using Different ClickHouse Versions

To use a different ClickHouse version, update the image tag in both ch-keeper.yaml and ch-server.yaml:
image: clickhouse/clickhouse-keeper:25.3.5.42   # Keeper version
image: clickhouse/clickhouse-server:25.3.5.42   # Server version
Keeper and server versions should match or keeper version should be >= server version for compatibility.

Monitoring ClickHouse

Access ClickHouse system tables for monitoring:
# Check disk usage
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query \
  "SELECT name, path, formatReadableSize(free_space) as free, formatReadableSize(total_space) as total FROM system.disks"

# Check replication status
kubectl exec -n clickhouse chi-wandb-weavecluster-0-0-0 -- \
  clickhouse-client --user weave --password weave123 --query \
  "SELECT database, table, is_leader, total_replicas, active_replicas FROM system.replicas WHERE database='weave'"

# Check ClickHouse server status
kubectl get pods -n clickhouse -l app=clickhouse-server

Backup and Recovery

ClickHouse data is stored in S3, providing inherent backup capabilities through S3 versioning and bucket replication features. For backup strategies specific to your deployment, consult with your W&B Solutions Architect team and refer to the ClickHouse backup documentation.

Security Considerations

  1. Credentials: Store ClickHouse passwords in Kubernetes secrets, not plain text
  2. Network Policies: Consider implementing NetworkPolicies to restrict ClickHouse access
  3. RBAC: Ensure service accounts have minimal required permissions
  4. S3 Bucket: Enable encryption at rest and restrict bucket access to necessary IAM roles
  5. TLS: For production, enable TLS for ClickHouse client connections

Upgrading

Upgrading ClickHouse Operator

helm upgrade ch-operator altinity/altinity-clickhouse-operator \
  --version 0.25.4 \
  --namespace clickhouse \
  -f ch-operator.yaml

Upgrading ClickHouse Server

Update the image version in ch-server.yaml and apply:
# Edit ch-server.yaml, change image tag
kubectl apply -f ch-server.yaml

# Monitor the pods
kubectl get pods -n clickhouse

Upgrading Weave Trace

Update the image tag in wandb-cr.yaml and apply:
kubectl apply -f wandb-cr.yaml

# Monitor weave-trace pod restart
kubectl get pods -n wandb | grep weave-trace

Additional Resources

Support

For production deployments or issues:
  • W&B Support: support@wandb.com
  • Solutions Architects: For ultra-high volume deployments, custom sizing, and deployment planning
  • Include in support requests:
    • Logs from weave-trace, ClickHouse pods, and operator
    • W&B version, ClickHouse version, Kubernetes version
    • Cluster information and trace volume

FAQ

Q: Can I use a single ClickHouse replica instead of 3? A: Yes, but it’s not recommended for production. Update replicasCount: 1 in ch-server.yaml and set clickhouse.replicated: false in wandb-cr.yaml. Q: Can I use another database instead of ClickHouse? A: No, Weave Trace requires ClickHouse for its high-performance columnar storage capabilities. Q: How much S3 storage will I need? A: S3 storage requirements depend on your trace volume, retention period, and data compression. Monitor your actual usage after deployment and adjust accordingly. ClickHouse’s columnar format provides excellent compression for trace data. Q: Do I need to configure the database name in ClickHouse? A: No, the weave database will be created automatically by the weave-trace service during initial startup. Q: What if my cluster name is not weavecluster? A: You must set the WF_CLICKHOUSE_REPLICATED_CLUSTER environment variable to match your cluster name, otherwise database migrations will fail. Q: Should I use the exact security contexts shown in the examples? A: No. The security contexts (runAsUser, fsGroup, etc.) provided in this guide are reference examples. You must adjust them to comply with your organization’s security policies, especially for OpenShift clusters which have specific UID/GID range requirements. Q: How do I know if I’ve sized my ClickHouse cluster correctly? A: Contact your W&B Solutions Architect team with your expected trace volume and usage patterns. They will provide specific sizing recommendations. Monitor your deployment’s resource usage and adjust as needed. Q: Can I customize the naming conventions used in the examples? A: Yes, but you must maintain consistency across all components:
  1. ClickHouse Keeper names → Must match the Keeper node hostnames in ch-server.yaml’s zookeeper.nodes section
  2. ClickHouse cluster name (weavecluster) → Must match WF_CLICKHOUSE_REPLICATED_CLUSTER in wandb-cr.yaml
  3. ClickHouse installation name → Affects the service hostname used by weave-trace
See the “Understanding Keeper Naming” section in Step 4 for details on the naming pattern and how to verify your actual names. Q: What if my cluster uses different anti-affinity requirements? A: The anti-affinity rules shown are recommendations for high availability. Adjust or remove them based on your cluster size, topology, and availability requirements. For small clusters or development environments, you may not need anti-affinity rules.
I