function pr_curve
y_true: True binary labels. The shape should be (num_samples,).y_probas: Predicted scores or probabilities for each class. These can be probability estimates, confidence scores, or non-thresholded decision values. The shape should be (num_samples,num_classes).labels: Optional list of class names to replace numeric values iny_truefor easier plot interpretation. For example,labels = ['dog', 'cat', 'owl']will replace 0 with ‘dog’, 1 with ‘cat’, and 2 with ‘owl’ in the plot. If not provided, numeric values fromy_truewill be used.classes_to_plot: Optional list of unique class values from y_true to be included in the plot. If not specified, all unique classes in y_true will be plotted.interp_size: Number of points to interpolate recall values. The recall values will be fixed tointerp_sizeuniformly distributed points in the range [0, 1], and the precision will be interpolated accordingly.title: Title of the plot. Defaults to “Precision-Recall Curve”.split_table: Whether the table should be split into a separate section in the W&B UI. IfTrue, the table will be displayed in a section named “Custom Chart Tables”. Default isFalse.
CustomChart: A custom chart object that can be logged to W&B. To log the chart, pass it towandb.log().
wandb.Error: If NumPy, pandas, or scikit-learn is not installed.